Zeroth and First Order Stochastic Frank-Wolfe Algorithms for Constrained Optimization

نویسندگان

چکیده

This paper considers stochastic convex optimization problems with two sets of constraints: (a) deterministic constraints on the domain variable, which are difficult to project onto; and (b) or that admit efficient projection. Problems this form arise frequently in context semidefinite programming as well when various NP-hard solved approximately via relaxation. Since projection onto first set is difficult, it becomes necessary explore projection-free algorithms, such Frank-Wolfe (FW) algorithm. On other hand, second cannot be handled same way, must incorporated an indicator function within objective function, thereby complicating application FW methods. Similar have been studied before; however, they suffer from slow convergence rates. work, equipped momentum based gradient tracking technique, guarantees fast rates par best-known for without constraints. Zeroth-order variants proposed algorithms also developed again improve upon state-of-the-art rate results. We further propose novel trimmed enjoy their classical counterparts, but empirically shown require significantly fewer calls linear minimization oracle speeding up overall The efficacy tested relevant applications sparse matrix estimation, clustering relaxation, uniform sparsest cut problem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Stochastic Frank-Wolfe Algorithms for Nonlinear SVMs

The high computational cost of nonlinear support vector machines has limited their usability for large-scale problems. We propose two novel stochastic algorithms to tackle this problem. These algorithms are based on a simple and classic optimization method: the Frank-Wolfe method, which is known to be fast for problems with a large number of linear constraints. Formulating the nonlinear SVM pro...

متن کامل

Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming

In this paper, we introduce a new stochastic approximation (SA) type algorithm, namely the randomized stochastic gradient (RSG) method, for solving an important class of nonlinear (possibly nonconvex) stochastic programming (SP) problems. We establish the complexity of this method for computing an approximate stationary point of a nonlinear programming problem. We also show that this method pos...

متن کامل

Stochastic Zeroth-order Optimization in High Dimensions

We consider the problem of optimizing a high-dimensional convex function using stochastic zeroth-order queries. Under sparsity assumptions on the gradients or function values, we present two algorithms: a successive component/feature selection algorithm and a noisy mirror descent algorithm using Lasso gradient estimates, and show that both algorithms have convergence rates that depend only loga...

متن کامل

Frank-Wolfe Algorithms for Saddle Point Problems

We extend the Frank-Wolfe (FW) optimization algorithm to solve constrained smooth convex-concave saddle point (SP) problems. Remarkably, the method only requires access to linear minimization oracles. Leveraging recent advances in FW optimization, we provide the first proof of convergence of a FW-type saddle point solver over polytopes, thereby partially answering a 30 year-old conjecture. We a...

متن کامل

A Comprehensive Linear Speedup Analysis for Asynchronous Stochastic Parallel Optimization from Zeroth-Order to First-Order

Asynchronous parallel optimization received substantial successes and extensive attention recently. One of core theoretical questions is how much speedup (or benefit) the asynchronous parallelization can bring to us. This paper provides a comprehensive and generic analysis to study the speedup property for a broad range of asynchronous parallel stochastic algorithms from the zeroth order to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2022

ISSN: ['1053-587X', '1941-0476']

DOI: https://doi.org/10.1109/tsp.2022.3162958